7,136 research outputs found

    Nonlocality and entanglement in qubit systems

    Full text link
    Nonlocality and quantum entanglement constitute two special aspects of the quantum correlations existing in quantum systems, which are of paramount importance in quantum-information theory. Traditionally, they have been regarded as identical (equivalent, in fact, for pure two qubit states, that is, {\it Gisin's Theorem}), yet they constitute different resources. Describing nonlocality by means of the violation of several Bell inequalities, we obtain by direct optimization those states of two qubits that maximally violate a Bell inequality, in terms of their degree of mixture as measured by either their participation ratio R=1/Tr(ρ2)R=1/Tr(\rho^2) or their maximum eigenvalue λmax\lambda_{max}. This optimum value is obtained as well, which coincides with previous results. Comparison with entanglement is performed too. An example of an application is given in the XY model. In this novel approximation, we also concentrate on the nonlocality for linear combinations of pure states of two qubits, providing a closed form for their maximal nonlocality measure. The case of Bell diagonal mixed states of two qubits is also extensively studied. Special attention concerning the connection between nonlocality and entanglement for mixed states of two qubits is paid to the so called maximally entangled mixed states. Additional aspects for the case of two qubits are also described in detail. Since we deal with qubit systems, we will perform an analogous study for three qubits, employing similar tools. Relation between distillability and nonlocality is explored quantitatively for the whole space of states of three qubits. We finally extend our analysis to four qubit systems, where nonlocality for generalized Greenberger-Horne-Zeilinger states of arbitrary number of parties is computed.Comment: 16 pages, 3 figure

    Triple Cohomology of Lie-Rinehart Algebras and the Canonical Class of Associative Algebras

    Get PDF
    We introduce a bicomplex which computes the triple cohomology of Lie--Rinehart algebras. We prove that the triple cohomology is isomorphic to the Rinehart cohomology \cite{Ri} provided the Lie--Rinehart algebra is projective over the corresponding commutative algebra. As an application we construct a canonical class in the third dimensional cohomology corresponding to an associative algebra

    Maximally correlated multipartite quantum states

    Get PDF
    We investigate quantum states that posses both maximum entanglement and maximum discord between the pertinent parties. Since entanglement (discord) is defined only for bipartite (two qubit) systems, we shall introduce an appropriate sum over of all bi-partitions as the associated measure. The ensuing definition --not new for entanglement-- is thus extended here to quantum discord. Also, additional dimensions within the parties are considered ({\it qudits}). We also discuss nonlocality (in the form of maximum violation of a Bell inequality) for all multiqubit systems. The emergence of more nonlocal states than local ones, all of them possessing maximum entanglement, will be linked, surprisingly enough, to whether quantum mechanics is defined over the fields of real or complex numbers.Comment: 13 pages, 5 figures, 2 table

    The 750 GeV Diphoton Excess as a First Light on Supersymmetry Breaking

    Full text link
    One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, that can be of the right magnitude to explain the excess. However, fitting the suggested resonance width, Gamma ~ 45 GeV, is not so easy. In this paper we explore efficient possibilities to enhance the sgoldstino width, via the decay into two Higgses, two Higgsinos and through mixing between the sgoldstino and the Higgs boson. In addition, we present an alternative and more efficient mechanism to generate a mass splitting between the scalar and pseudoscalar components of the sgoldstino, which has been suggested as an interesting alternative explanation to the apparent width of the resonance.Comment: 14 pages, 3 figure
    corecore